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Abstract--Buoyancy driven thermal convection due to the presence of a sphere of constant heat flux in an 
unbounded fluid-saturated porous medium is studied analytically. Transient and steady-state solutions 
have been obtained for the velocity and temperature fields in the form of series expansions in the Rayleigh 
number, which is based on the permeability of the porous medium and the heat flux from the sphere. All 
discussions axe based on the assumptions that the flow is governed by Darcy's law and that the thermal 

Rayleigh number is small. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

Free convection flow and heat transfer due to the 
presence of a heated sphere embedded in an 
unbounded porous medium is one of the con- 
temporary subjects of study owing to its wide-ranging 
applications in a rmmber of fields such as chemical 
engineering, thermal insulation systems, and nuclear 
waste management. Ever since the work of Yamamoto 
[1], there has been a spate of research papers on this 
topic. More recently Lai and Kulacki [2] made an 
extension of Yamamoto's work to determine the 
impact of species concentration gradients upon the 
thermally driven flow. With the possible exception 
of the work of Ga.napathy and Purushothaman [3], 
wherein the authors considered the impact of periodic 
variations in the temperature of the sphere on the 
essential flow chara.cteristics, most of the existing stud- 
ies were concerned only with steady-state solutions 
with constant temperature spheres. However, quite 
often the heated sic,here is buried instantaneously and 
as a result, a knowledge of the transient behaviour of 
the flow and heat transfer becomes essential. Fur- 
thermore, in a practical situation such as the cooling of 
the components of electrical and electronic equipment 
and the management of nuclear waste, the appropriate 
boundary condition is that the total heat flux on the 
surface of the sphere is specified rather than that of 
the total prescribed wall temperature. It is therefore 
worthwhile to present a solution to this fundamental 
problem of penetrative convection due to a sphere of 
constant heat flux, buried instantaneously in an infi- 
nite porous medium and to investigate the ensuing 
flow field and heal: transfer in the context of thermal 
flows in porous media. 

The present wo:rk relies on the asymptotic expan- 
sions in the Rayleigh number to obtain the solutions 

of the temperature and flow fields in the system and 
hence the results reported here are representative of 
the low Rayleigh number regime. The sphere is 
assumed to be of constant heat flux, the fluid satu- 
rating the medium to have Boussinesq incom- 
pressibility, and the fluid flow to be governed by Dar- 
cy's law. 

The mathematical problem is formulated in Section 
2, the transient state is discussed in Section 3 and 
the steady-state in Section 4. Finally we conclude the 
study with a review of the results obtained. 

2. MATHEMATICAL FORMULATION 

We consider the natural convection around a sphere 
of radius a and of constant heat flux Q, buried instan- 
taneously in an unbounded fluid-saturated porous 
medium of low permeability. The medium is assumed 
to be rigid, homogeneous and isotropic and the fluid 
saturating the medium has Boussinesq incom- 
pressibility with the density-temperature relation 

p = p ~ [ 1 - ~ ( T - T o ~ ) ]  (1) 

where p is the fluid density, T is the temperature and 
fl is the volumetric coefficient of thermal expansion 
and the subscript oo denotes a reference state. 

A spherical-polar coordinate system (r,q~,O) is 
chosen (Fig. 1), with the origin at the centre of the 
sphere and the axis ¢k = 0 vertically upwards. Since 
the vertical axis is parallel to the gravity vector, the 
problem is symmetrical in the angular direction 0 and 
consequently, neither 0 nor the 0-component of vel- 
ocity appears in the analysis. According to the Darcy 
flow model [4], the equations describing the con- 
servation of mass, momentum and energy in the med- 
ium in the absence of dispersion effects are : 
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NOMENCLATURE 

a radius of  the sphere [m] 
Cp specific heat of  fluid at constant  

pressure [m 2 s -2 K -I] 
ei exponential  integral, equation (22c) 
f function of t/, equation (19) 
fl,2,3 functions of  q, equation (22a) 
G function of 7, equation (24) 
g gravitat ional  acceleration [ms -2] 
K premeabil i ty of  the porous medium 

[m ~] 
k thermal conductivity [kg m s-3 K - ' ]  
P fluid pressure [kg m -1 s -2] 
Q heat flux [kg s -3] 
R non-dimensional radial  coordinate 
R0 non-dimensional radius of  the sphere 

(alx/-K~ 
Ra thermal Rayleigh number,  

(flg K2 /ctvk ) Q 
r radial  coordinate [m] 
s surface of the unit  sphere 
T temperature [K] 
t time [s] 
U non-dimensional  radial  velocity 
u radial  velocity [m s-~] 
V non-dimensional  transverse velocity 
v transverse velocity [m s-1] 

X function of r/0, equation (22c). 

Greek symbols 
effective thermal diffusivity of  the 
porous medium [m 2 s-1] 

fl coefficient of  thermal expansion [K-  '] 
). porosi ty of  the porous matrix 
0 azimuthal  angle 
tk meridian angle 
~/ similarity variable, R/2v/~t 
r/0 similarity variable, Ro/2"x~tt 
/~ fluid viscosity [kg m - l  s -1] 
v kinematic viscosity [m 2 s -  ~] 
e dummy integration variable, equation 

(22c) 
p fluid density [kg m -3] 
tr heat capacity ratio, equation (6) 
~k stream function [m 3 s- l ] .  

Subscripts 
0 zero-order solution 
1 first-order solution 
2 second-order solution 
oo reference state 
f fluid phase 
s solid phase. 

U 

g 

Y 
D, 

Fig. 1. Configuration of interest. Spherical-polar coordinate 
system (r, 4~, 0) with the origin of the system at the centre of 
the sphere and the ~b = 0-axis parallel to the gravity vector. 

CO 2 co 
(r  u sin ~) + ~-~ (rv sin q~) = 0 (2)  

= ) u # ~dr  + p g c o s ~  (3) 

K / 1  cop . \ 
v = -~ ~r - ~  -pgs lndp)  (4) 

COT aT vcoT 
°Ti +U~r + rco--~ 

CO 1 CO . CO 

where u and v are the radial  and transverse com- 
ponents of  the velocity, Kis  the medium permeabili ty,  
P is the pressure, # is the coefficient of  viscosity, g is 
the gravitat ional  acceleration, ~t is the effective thermal 
diffusivity and a is the heat capacity rat io given by 

tr = 2 +  (1-2)(pCp)s/(pCp)f (6) 

where 2 is the porosi ty  of  the porous matrix,  cp is the 
specific heat of  the fluid at  constant  pressure and the 
subscripts ' f '  and 's '  refer to the fluid and solid phases, 
respectively. In writing the above equations we have 
assumed that  both the medium and the saturat ing 
fluid are in thermal equilibrium and that  all the physi- 
cal quantities are constant  except in the buoyancy 
term. 

We take advantage of  the continuity equation (2) 
to define a stream function ~, such that  

u = (r 2 sin ~ ) -  1 CO,k/CO,b, v = - (r sin ~b)- l CO~/COr 

(7) 

and eliminate the pressure terms in equations (3) and 
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(4) by cross-differentiation. Introducing the non- 
dimensional quantities 

R = r/x//K, t ,  = at/Ka, 

0 ,  = 0/a.4/-~!, T .  = (T--  To~) / (a /k )x /~  (8) 

where k is the thermal conductivity, we finally obtain 
for the conservation of momentum and energy in the 
non-dimensional form (after dropping the asterisk) 

1 0 /' 1 00'~ 1 0 2 0  

R 2 t3t~ ~si-~ ~)-I '-sinq~ dR 2 

= Ra cos q~ ~ + R sin q5 (9)  

3T 1 e(~k, T) + - -  
Ot R 2 sin ~b 0(qk, R) 

1 F 0 /  .0T'~ 1 ~ ( s i n 4 , ~ ) ]  (10) 

where 

and 

0(0, T) 00 aT dO OT 
O(~b, R) 04) OR OR 04) 

(11) 

Ra = (flgK 2/avk) Q, (12) 

is the thermal Rayleigh number, based on the per- 
meability of the medium and the specific heat flux at 
the surface of the sphere. The non-dimensional form 
of the velocity components are given by 

(U, V) = (v/K/a)(u,  v). (13) 

the initial and boundary conditions Accordingly, 
reduce to 

U =  V = T = 0  a t t = 0 ,  

U , V , T ~ O  as R ~ oo, 

dU/Odp= V = O T / 0 4 ~ = O  a tq~=0,n ,  

(R: sin q~) -t  00/04~ = 0,  

O T / O R = - - I  o n R = R o ,  (14) 

where Ro (=  a/w/]~) is the non-dimensional radius of 
the sphere. 

3. TRANSIENT STATE 

Consistent with the hypothesis that the thermal 
Rayleigh number Js small, we seek a perturbation solu- 
tion by assuming power series expansions for 0 and 
T in the form : 

o0 

(0, T) = ~Ra" (0  ., T.) (15) 
0 

with similar expressions for U and V to satisfy the 
conditions of equation (14). We substitute equation 

(15) into equations (9) and (10) and equate terms 
of equal powers in Ra. The appropriate boundary 
conditions are obtained from equation (14) with the 
help of equation (15). 

As 00 corresponds to a state of pure conduction, 
there will be no fluid motion and hence we take 00 = 0. 
As the temperature distribution is centrally symmetri- 
cal, the function To is found from the solution of the 
equation 

0to 1 0(  20To  
Ot - R 2 ~ R OR]" (16) 

To(R, t ) =  F(R, t)/R, we get from equation Setting 
(16) 

OF/Ot = O2F/OR2 (16a) 

and by applying the Laplace transform, we finally 
obtain, 

To (R, t) 

= (R~/R){ erfc [ (R-R0)/2x/ t  ] - exp(R/Ro - 1 

+ t /R~)er f c [ (R-Ro) /2v / t t+x /@Ro]} .  (17) 

This solution does not depend on R and t individually, 
but through a single non-dimensional variable 
R/2x/~t. Setting t /=  R/2x~t and r/0 = Ro/2x~t, we 
obtain from equation (17), 

To(r/) 

= R0 (r/0/r/)[ erfc(t / -r /0)-  exp(r//t/0 - 1 + 1/4r/0 z) 

• erfc(r/-r/0 + 1/2r/o)]. (17a) 

The first convective correction to the velocity field 
is now found from the solution of the equation 

- -  - Rsin ~b " -~-  
R 2 ~ sinq5 + sin~b c3c~ 2 

(18) 

in which the variables are separated by setting 

01 = 2x/~Ro 2 sin2 tk .f(t/). (19) 

This then leads to an ordinary differential equation of 
the second order for f(r/) : 

q2f.(r/) -- 2f(r/) 

= -- q erfc(r/-- r/0) + t/(1 -- t//t/o) 

• exp(r//r/o -- 1 + 1/4r/~) 

• erfc(t/-- t/o + 1/2t/o), (20) 

where the primes denote differentiation with respect 
to t/. The general solution of this equation is found to 
be 

f(r/) = C, r/2 + C2/t/ + t/o(r/o/t/- 1) 

• exp(t//t/o - 1 + 1/4r/o z) 
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~t ~ / 0 " 2 f  0"4 06  

t 
Fig. 2. Transient flow pattern. Curves represent the stream- 

lines (t~l/2R~)t -1/2 = const, with % = 1. 

• erfc(q - %  + 1/2%) + f l  (r/) 

• erfc(r/-- %) +f2 (r/) 

• exp [ -  ( r / -  r/o) z] +f3 (r/) 

L • exp [ -  ( r / -  r/o)2]/~/'dr/ (21) 
o 

where 

f ,  (~/) = r/2 (r/o3/3 - %/2 + ~d/~/2) - (21"/o 2 + l) /4r/  

f :  (r/) = ( i /w,/~) [r/(2r/3/3 + % + .,,/~) 

+ % ( l  - r/r/o)/2r/+ 1/41 

f3 (r/) = r/: ( -  I0r/4/3 + 4r/3 - 7%:/3 

+i'/o,v/-n - I /2) / .v/~.  (22a) 

The boundary conditions at infinity imply 

Cl = ( 1 / ~ ) ( 1 0 ~ / g / 3 - 4 %  3 + 7~2/3 

- r/o.v/~ + I /2)  • X(r/o ) (22b) 

where 

1 2 
X(rlo) = e x p ( - r t ~ ) ' [ v / ~ f f ° e ' : d e - ~ e i ( r l o ) l  

(22c) 

e~(') being the exponential  integral. The boundary  
condit ion on the surface of  the sphere implies 

C2 = - c ,  r/3 - ~3 (~o 213 - %12 + v/-~12) 

+ (2r/o 2 + I ) 1 4 -  ( l lx , /~) [qo (2r/3o13 

+ % + w/-~) - (2r/~) - 1)14 + 112]. (22d) 

The map of  the streamlines ~i/(2w/tR02) = const, is 
presented in Fig. 2, from which it is deducible that  in 

the initial stages, closed loops appear  in the flow whose 
geometry considerably changes at higher values of t, 
al though the symmetry about  the plane ~b = n/2 is 
preserved at all times. Furthermore,  during the initial 
stages of the flow development,  there is a con- 
centration of the velocity field around the sphere and 
as time increases the flow pat tern present near the 
sphere spreads outwards filling the entire space. These 
streamlines enclose the stagnation points (points of  
maximum if) whose distance from the centre of the 
sphere increases with time and finally recede to infinity 
in the ult imate state as t --, ~ .  There is no accumu- 
lation of  heat into the flow field and the flow in and 
around the streamlines remains laminar,  the entire 
process being dominated by viscosity coupled with 
thermal diffusion. The smaller the radius of the sphere, 
the lesser will be the concavity of  the streamlines in 
its vicinity and in the limiting case when % ~ 0, the 
streamlines instead of  being concave will tend to be 
convex, so that  there will be a slight bulging of the 
streamlines in the neighbourhood of  the origin. As this 
si tuation corresponds to that  of a point  heat source of  
thermal energy Q embedded in an unbounded 
medium, it is natural  that  we recover the results of  
Bejan [5]. 

The first convective correction to the thermal field 
is now found from the solution of  the equation, 

or~ 1 [0(~'o, r l )  0(~, ,  r o ) ]  

Ot +  L-OR ,RS j 
1Fo(R2 r,  1 o /  or, n 

= ~ E L ~  \ ~)+s~nO,~s, nc/)-~)] (23) 

in which the separation of  variables can be achieved 
by setting 

T~ = cos 4~" G(q)/~t .  (24) 

This then leads to a second order differential equation 
for G:  

r/2 G"(~/) + 2r/(r/2 + 1)G'(q) +2(r/2 -- 1)G(q) 

= - [R~/q] z" [ erfc(q - % )  - (1 - q/q0) 

• exp(r//q0 - 1 + 1/4t/0 z) 

• erfc(q - - %  + 1/2q0)] • f(r/), (25) 

with the boundary  conditions G'(%) = G(m)  = 0. As 
an exact solution is not  possible, for the sake of  com- 
pleteness we solve equation (25) numerically choosing 
q0 = 1 and plot  the graph of  G(~/) in Fig. 3, from which 
it is deducible that  G(r/) increases from zero on the 
surface of  the sphere to a certain value and then starts 
decreasing to zero at  posit ions farther away from the 
sphere. Albeit  tacitly, this then implies that  there is an 
increase in temperature for points in the upper  half- 
space (0 ~< q~ < n/2) accompanied by an equal 
decrease in temperature in the lower half-space, and 
consequently the fluid particles in the upper  half-space 
will be warmer than those in the lower half-space. 
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Fig. 3. Temperature l~rofiles of the transient state: (a) To/P~ ; 
(b) (x//t/cos ~b) Tl with r/o = 1. 

However,  in the liraiting case when the heated sphere 
reduces to a point  heat source, the behaviour of  the 
function G(q) will be otherwise, since, by virtue of 
being a point  source, it is a point of singularity [5] and 
consequently the velocity as well as the temperature 
is infinite at  the origin. One could further observe 
from the figure thai: the contr ibut ion of  the conduct ion 
solution to the heat transfer mechanism is more pro- 
nounced than the first-order convective correction to 
the temperature field, especially in the immediate 
neighbourhood of the sphere which is the impor tant  
region of  thermal activity. 

Owing to prohibit ive algebraic complexities, higher- 
order corrections to the velocity and temperature 
fields were not  obtained. 

4, STEADY STATE 

In the ult imate state (as t ~ oo), the equations gov- 
erning the flow and temperature in the non-dimen- 
sional form reduce to 

1 ,~ /  1 o~k 1 02¢ 
R 2 ~ t s i - - ~  ~ ) +  sin q~ OR z 

~T 
= R a ( c o s ( a - ~ + R s i n q S ~ )  (26) 

1 8(~b,T) co [ at3T~ 1 0 [ .  0T'x 

(27) 

with the associated boundary  conditions 

U , V , T ~ O  as R-- ,  o% 

(R2sindp)-~O~k/Odp = 0; OT/OR -- - 1  o n R  = R0 

OUlOda = V = OTlOdp = 0 at ~b = 0, rr. (28) 

Assuming the series expansions as in equation (15) we 
have for the steady state ~O0 = 0 and 

To = R2 /R  (29) 

which is otherwise evident from equation (17) in the 
limit t ~ oo. Fo r  the sake of  brevity we present below 
the solutions of the non-vanishing coefficients of  equa- 
tion (15) up to the order of  (Ra)2 : 

~kl = (R3 /2)(q - 1/~/) sin 2 q~ 

Tl = (R3/2)[1/rl - (5/4)t/-2 + (1/2)t/-3] cos ~b 

~2 = (R~/4)[Eq/3-  5/4+ l/r/ 

- (5/12)t/- 21 sin 2 q~. cos q~ 

7"2 = (R0S/4)[f~ (~/) +f2(q) cos 2 ~b] (30) 

where, 

f i  (~/) = -- (17/18)r/- '  + (5/4)r/- 2 _ (2117/3780)~/- 3 

- (11/30)n -3 l o g , / -  (5/72),/-4 + (1/140),/-5 

fz ('/) = (5/6) , / - '  - (5/2)r/-2 + (2537/1260)~/-3 

+ (11/10)t/-3 l o g t / -  (5/12)q -4 + (5/28)t/-5 

(30a) 
and r / =  R/R  o. 

In order to illustrate the solution, we have drawn 
in Fig. 4 the streamlines and the isothermal lines cor- 
responding to two different values of  Ra, with the left- 
half  of  the map showing the isothermal lines and the 
right-half  the streamlines of the motion.  While the 
streamlines are a little wider apar t  below the sphere 
than above, the isothermal lines are not  concentric 
owing to convection and in the second case (Ra = 6) 
the maps of  those isothermal lines which are a little 
farther away from the sphere do not  exhibit closed 
loops. It is further observed from the figures that  the 
streamlines are unicellular when Ra = 1 whereas they 
are multi-cellular when Ra = 6. In fact, with 

= ga¢~ +Ra2~2,  (31) 

it is seen that  for the dividing streamline ~k = 0, 

R = R o ;  ~b = 0,~ (31a) 

and the (R, ~b) points satisfy the relation 

24 R(R  + Ro) 
c o s ~ b = - R a  ( 8 R E - 7 R R o + 5 R 2 ) "  (31b) 

This then leads to a range of values of  Ra such that  
when 0 < Ra ~< 3, the flow pat tern is unicellular, and 
parts  of the streamlines below the sphere move off the 
symmetry axis whereas, when Ra > 3, in the relatively 
colder region below the surface of  the sphere a second 
cell appears.  Appropr ia te  numerical values of cos ~b 
from equation (31b) suggest that  the second cell 
appears below the sphere at  a radial  distance of  about  
(13/2)R0 from the centre of  the sphere, when Ra = 4 
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(a) 'IC 

i 

(b) 

Fig. 4. Profiles of streamlines (right half) and isothermal 
lines (left half) : (a) Ra = 1 (b) Ra = 6 with Ro = 1. 

where s is the surface of the unit sphere. Using the 
expressions for T and To, we find from equation (32) 

Nu = 1 - (0.07025)Ra 2 + O(Ra 3), (33) 

which implies that the effect of convection on heat 
transfer is of the order O(Ra2), which is for small 
values of Ra. This explains the reason why porous 
media are widely used in thermal insulation of heated 
bodies. 

5. CONCLUSION 

We have presented a theoretical study of natural 
convection from a sphere of constant heat flux buried 
instantaneously in an unbounded fluid-saturated 
porous medium and obtained the transient and ste- 
ady-state solutions for the flow and temperature fields 
using a perturbation analysis in the limit of small 
Rayleigh numbers. The results are valid in the 
diffusion dominated regime only. As the thermal Ray- 
leigh number is assumed to be small, the solutions we 
have obtained for the streamfunction are expected to 
give a reasonably good picture of the free convection 
motion and in the absence of stability effects, the 
behaviour of the flow is also unlikely to change rad- 
ically for moderate values of Ra. Since the Rayleigh 
number depends only on the total heat flux from the 
sphere and the permeability of the medium, the evol- 
ution of the flow pattern is expected to be the same, 
irrespective of the nature of the material embedded. 
For instance, when a copper sphere is embedded in 
a surrounding sand-oil medium, depending on the 
properties of the saturating fluid and the total heat 
flux from the sphere one can expect the Rayleigh num- 
ber to be as high as of O(1), since the permeability of 
a sand-oil medium varies from 2 x 10 -7 to 1.8 x 10 -6 
[6]. 

Of special importance is the finding that for Ra > 3, 
there appears a second cell below the sphere, so that 
the flow pattern is multi-cellular and in this case, the 
isothermal lines that are formed a little farther away 
from the sphere do not exhibit closed loops. Our 
results show that the convective flow near the top of 
the sphere retains its axial symmetry and do not show 
any evidence of a third cell forming there, breaking 
the symmetry between the conditions at the sphere 
top and bottom. 

Acknowledgement--The author is thankful to the referees 
for their many useful suggestions which led to a definite 
improvement of the paper. 

and at a radial distance of about (7/2)Ro, when Ra = 5 
etc. 

The total quantity of heat necessary to maintain 
the steady-state is characterised by the local Nusselt 
number defined by 
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